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Abstract

The influence of a set of satellite oscillators on the response behavior of a
master oscillator, to which the set is coupled, is of fundamental significance to
structural acoustics and beyond. The focus is largely on the term that modifies
the impedance of the master oscillator due to that coupling. The real and
imaginary parts in this term are dubbed the induced reactive factor and the
induced loss factor, respectively. For a passive set of satellite oscillators the
induced reactive factor may be either positive (mass-like) or negative (stiffness-
like) whereas the induced loss factor is invariably positive definite. The behavior
of both induced factors as functions of frequency is explored, especially in the
range of frequency spanning the resonance frequencies of the satellite oscillators.
The resonance frequency of the master oscillator in isolation is placed centrally
in this frequency range. The phenomenon of the “suppression of undulations”, in
the induced reactive factor and in the induced loss factor, as the modal overlap
parameter approaches and exceeds unity, is demonstrated. Also demonstrated
and defined is the phenomenon of “erosion” in these induced factors, again, as

the modal overlap parameter approaches and increases beyond unity.



| 8 Introduction

Harmonic oscillators are simple structural elements that are helping to model
structural complexes. The models are then analyzed in terms of these coupled
harmonic oscillators. The result of the analysis is interpreted to yield infor-
mation .Of the sensitivity of the response behavior of the complex to parameters
that define it. The sensitivity may then reveal which parameters need to be
modified in order to achieve, for example, noise control goals for the complex.
The scheme of this analysis is initiated by casting the structural complex in terms
of structural components. This division of the structural complex yields a matrix

equation of motion in the form

[z1x.0) &' v = pest); 2|60 &' = (24, (5p 1%,.0)d} ), A1)
Zaa(Xa | %> t) = 26 (¥as!) S =2);  W%:1) = (v (xa.0)};

Pe(5t) = {Pea(xaot)}s x=1{x,};  dr=(da, &,,), (12
and (¢#) is the temporal variable. In Eqgs. (I.1) and (I.2) the quantity

Zgy (X |x;,,t) is the element in the impedance matrix operator g(;g | x',¢) that is

due to the (y)th structural component influence on the (a@)th structural com-




ponent. The diagonal elements are typically defined by the self-impedance
operator z,(x,,t) and the off-diagonal elements are typically defined by the
coupling impedance operator Zgy(xg|xy,t) between the (y)th and the (a)th
structural components with @ # y; there is no coupling between these structural
components if z,,(x,|x,,t) is identically equal to zero. Further in these
equations, v,(x,,t) and p,,(x,,t) are, respectively, the response and the
external drive for the (a)th structural component and (x,)is the vector that
spans the spatial dimensionality of the (a)th structural component. The rank of
the matrix equation of motion is equal to (N), the number of structural
components in the complex. Each structural component is selected in a manner
that admits its equation of motion to a modal analysis; i.e., the impedance
operator z,(x,,t) is selgcted to be an eigenoperator in the spatial domain. [This
selection is not necessarily unique; there may be a number of choices for
selecting z,(x,,t). Of course, each choice may determine a different set for
za},(xa|x;,,t) with a#y.] The modal analysis is characterized by eigen-
functions (mode shapes), typically 4, j(xz), and by eigenvalues, typically
24 j(1), of the eigenoperator z,(x,,); namely

2 (g, 1) By j(%5) = 24 (1) @5 (%) - (1.3)




The mode shapes may be collated into a mode shape vector

9(x) ={da (xa)}; G (x5) = {8y (%)} d4)
and the mode shapes are by definition, orthogonal and closed

Na
Idxa ¢aj(xa) ¢ak(xa) = §jk; Z¢aj(xa) ¢aj(x,a) = 5(xa _xc,x)a (1.5)
J

respectively, where (V,) enumerates the modes in the (a)th structural com-
ponent. In Eq. (I.3)-(I.5) the subscripts (@) and (j) designate the (a)th
structural component and the (/)t» mode in that structural component, respect-
ively. The modes are then employed to remove the spatial dependence from the
matrix equation of motion for the complex, yielding, in its place, a modal matrix
equation of motion in the form

20U = pe(®), e
where z(#) is the modal impedance matrix operator, v(f) is the modal response
vector and Pe () is the modal external drive vector. In some details

N N,
g(l‘) = (gaa éay . gfzy (; - éa;')); Zaa = (Zaj 5jk); g5 = Zzzyqaj;
Y q

Za jai =0 for j#i; ggza =(Zaj7q);

Zajra = [Wa ba;(5a) Zay (gl 0) d, 8,405), (1.7a)
Y=V} Yo = 0yl Vay = [ty va(igad) 8 (5,), (I.7b)

Ee = {gea}; Bea = {peaj}; peaj = J.dxa pea(xaﬁt) ¢aj(xa)> (170)




where occasionally, the dependence' of quantities on the temporal variable is
obvious and, as such, is suppressed. The particular division of the structure into
components, each of which admits to a modal decomposition, defines the nature
of the couplings among the components. Clearly, the orthogonality of the modes
in a structural component assures that modes that belong to that component are
not coupled to each other; i.e., Zoa ,in Eq. (I.7a), is a diagonal matrix operator.
Moreover, the modal impedance operator is equivalently that of a harmonic
oscillator. The coupling between two structural components is then defined in
terms of coupling between a mode of one component to that in another;
gf,}, (;—cgar) accounts for off-diagonal elements only. For example, the off-
diagonal element z, jyq Pertains to the coupling element between the (g)th
mode in the (y)th structural component and the (j)th mode in the (a)th
structural component with a#y . The rank of the modal equation of motion is
N
equal to ZNa where (N,) is the number of viable modes in the (a)th
a
structural component. Naturally, the rank of Eq. (1.6) usually far exceeds that of

Eq. (I.1); that increase in rank is the penalty that is paid for the removal of the

spatial dependence from the latter equation. The penalty is partially relieved by



the fact that the modal matrix impedance operator in Eq. (I.6) harbors elements
that are much simpler than those usually characterizing the matrix impedance
operator in Eq. (I.1). However, the increase in rank is not the only penalty. If
spatial information in the response of the structure is significant, to reconstitute
this information one requires, in addition to the derivation of v(?), the construct-
ion of the scalar product

Vo (Xast) = Vg (1) * 82 (%,)5 U(E:t) = (Vg (o)}, (1.8)
where g(ic,t), (éa (xz), v(#) and y,(f) are defined Egs. (I.2), (I4), (1.6) and
(L7b), respectively, and the superscript (T) indicates the transpose of the
quantity. The availability and stbrage of the mode shape vector ?(35), as stated in
Eq. (I.4), is a tall order that can seldom be satisfactorily met. Whether the
penalty for circumv¢nting Eq. (I.1) via Egs. (I.6) and (I.8) is advantageous, is
difficult to assess without clear statements of goals and requirements. Often such
statements can be made only when the analysis is completed; a catch (22), to be
sure. Excluded from these arguments are situations in which the analyzed
complex ideally lacks a priori spatial dependence and yet the constituent
components can be represented by sets of harmonic oscillators. In this case Eq.

(1.6) is the whole shebang.




In this thesis a modest part, in this grand scheme of providing descriptions to
the behavior of structural complexes, is pursued. The modal matrix equation of
motion is assumed given. The aim is to seek answers to questions such as: How
is one to draw relevant information that lies within the modal equation of
motion? And how is one to interpret this information in seeking to beneficially
modify the parameters that specify the éomplex that is at the core of this equation
of motion? Moreover, the thesis deals with a highly simplified complex
composed of a single master oscillator coupled to a set of satellite oscillators.
The satellite oscillators in the set are uncoupled to each other. Several papers
and theses are found in the open literature with a largely similar aim in sight,
employing basically a similar complex [1-11]. What is then new in the present
effort? For one, most of these cited papers deal with satellite oscillators that are
essentially sprung-masses as depicted in Fig. 1a. The coupling in this case are
stiffness control and they are strong. In the present thesis other forms of
couplings are also introduced, in particular, mass and gyroscopically controlled
couplings [12, 13]. In addition, the coupling strengths are moderated so that the
influences of moderate and weak céuplings may be defined and analyzed. The

modal equation of motion is stated for the complex as depicted in Fig. 1b. Mass,




stiffness and gyroscopic coupling parameters are defined and employed to

establish the equation of motion for a complex that harbors such forms of

couplings.

Assuming that the complex is stationary in the temporal domain, it is

convenient to express the modal matrix equation of motion, hereto defined in the

time domain, also in the frequency domain. In the frequency domain Egs. (1.6)

and (1.7) take the forms

Z(@)V (@) = B(@),

Z(@) = (Zoa(@) 8z — 25,(@) 1-8,)); Zaa = (Z4;64);
Zyj = sz“%zyqaj; 2°=(Zy4),q);  Zgjos =0for j#i;
Z4() ;(r)q =Zai @) F O Zajyg®) O = Zg 0 (@) (1),
V={Vads Va=as}s Vaj(@)= [dtvg;(t) £(0),

B ={Ba}; B ={Peaj}; Poaj(@)= [dt pou; () F()

_ where the Fourier function f(t). is defined

f@0 =@ry YV exp(-iwt),

(19)

(1.10a)
(1.10b)

(1.10c)

(1.11)

and, again, occasionally the dependence of quantities on the frequency variable is

obvious and, as such, is suppressed. The choice of the frequency domain versus

the temporal domain is, with caution, largely a matter of convenience and




10

preference; again with caution, the two domains are merely related by a Fourier
transformation [14]. One recalls that the modal matrix equation of motion is
defined in terms of a matrix impedance operator that describes the behavior of a
complex composed of coupled harmonic oscillators. In the model of the
complex here considered, a master oscillator is coupled to a set of satellite
oscillators; the satellite oscillators are not coupled to one another. [cf. Fig 1b.]
The modification in the matrix element that describes the impedance operator of
the master oscillator, induced by the coupling to the set of satellite oscillators, is
of particular interest. This modification is characterized by a reactive part S(y)
and by a real part 7,(y), where (y) is the normalized frequency variable;
y=(o/w,), with (w,) the resonance frequency of the master oscillator in iso-
lation. A positive value for the induced reactive factor S(y) contributes a mass
control term, a negative value contributes a stiffness control term. For the
passive complex here analyzed, the induced loss factor 7,(y) is positive definite.
The natures of S(y) and of 7,(y)and their modifications to variations in the
parameters that specify the complex are recorded and interpreted. Some of these

variations are locally imposed by pseudo-statistical means e.g., the resonance
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frequency and the modal overlap parameters that are assigned to each individual
satellite oscillator are picked pseudo-statistically, either separately or in unison.

A companion report that deals only with the induced loss factor 7,(y)has
.been recently issued; in that report the induced reactive factor S(y) is not invest-
igated [15]. Indeed, the present report is largely issued in order to rectify this
omission. In the present report it is noted that the induced reactive factor S(y)
may be of significance only when the coupling strengths are strong. In these
cases at the edges of the frequency range spanned by the resonance frequency
distribution of the satellite oscillators, the absolute value of the induced reactive
factor S(y) may approach and exceed unity. On the other hand, even at the
edges of this frequency range, for moderate coupling strengths the values of
| S(¥)| are insignificant and for weak coupling strengths the values of | S(y)| are
negligible compared with unity.

A loss factor is basically an energetic quantity, and, therefore, one may
inquire whether the induced loss factor 7,(y), as just determined via the linear
impedance analysis (LIA) may be estimated via an energy analysis (EA). In this
vein in another. companion report, the analysis of the complex performed herein

and in Reference 15 is repeated [16]. In Reference 16, however, instead of using
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a linear impedance analysis: e.g., as stated in Eq. (1.9), an alternative approach is
used. In this approach the stored eneréy E,(y) in the master oscillator, the
stored energy E,(y) inthe (r)th satellite oscillator and the stored energy E.(y)
in the coupling of this satellite oscillator to the master oscillator are estimated in
terms of the sum of the kinetic and potential stored energies in each category.
Distinguishing between the kinetic and potential stored energies renders it
possible to determine the Lagrangians for the complex. Applying the Lagrangian
equations, the lineaf equation of motion are yielded [12, 16]. This procedure
provides a check that the equation of motion in the linear impedance analysis
(LIA) are compatible with the equation of motion in the energy analysis (EA).
This check is successfully performed [12, 16]. In terms of the stored energies,
E,(), E,(y) and E_,(y), the dissipated power I1,(y) in the master oscillator,
the dissipated power I1,(y)in the (r)th satellite oscillator and the dissipated
power II..(y) in the coupling between these two oscillators are estimated,
respectively, using the loss factors 7,, 77, and 7,, that are assigned to the master
oscillator, to the (r)th satellite oscillator and to the coupling between them,
respectively. Also estimated is the external input power IT,(y) into the master

oscillator by an external drive. Under the prevailing assumptions that only the
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master oscillator is driven, IT,(y) is the total power input into the complex from
an external drive. Invoking the conservation of energy (or the balance of power)

one may equate

. (y) = H,(»)+1(3); L, () =11,(p) + 1L, (1);

N
I—Ios (y)zznor(y)s (Il2a)

r=1

where (N) is the number of satellite oscillators in the complex. From Eq. (I.12a)
the loss factor 775(y) of the master oscillator and the induced loss factor ne(y)

may be estimated; namely

1D, () @ Epx ()= nE(0) =7, (I.12b)

0 1D (1) @ Ex (0)]=7E(3) , (1.12¢)
where E g (y)is the kinetic energy stored in the master oscillator, as a function
of (). The superscript (e)is introduced to distinguish between the loss factor
7, of the master oscillator aﬁd the induced loss factor 7,(y), as assigned and
determined for the master oscillator, respectively, via the linear impedance
analysis (LIA), and the loss factor 77(y) and the induced loss factor nZ(y), as
determined via the energy analysis (EA), respectively. The equality of the loss
factors 77, and nS(y)is obvious and is stated as such in Eq. (1.12b). On the

other hand, the comparison between the two induced loss factors; n,(y)and
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75 (¥), is computationally performed and it is found that, by and large, they are
identical [16].

Finally, and in addition, in Reference 16 the relationship of (EA) to the
statistical energy analysis (SEA) is established. In particular, it is found that
(SEA) may underestimate the ratio E;(y) of the energy E,.(y) stored in the
satellite oscillators and in the couplings to the energy E,(y) stored in the master

oscillator; namely

N
E5(30) =[Ess W/ E,(N];  Eop(y) =Y E e (3);

r=1

E,(»)=E.(y)+E,(3); E,(»)=E;x() +Ep(y), (L.13a)

where (N), again, is the number of satellite oscillators and E,p(y) is the potent-
ial energy stored in the master oscillator, as functions of (y). [cf. Eq. (I. 12).]
The ratio E](y) is a measure of the global coupling strength in the milieu of
(SEA); it is related to the modal coupling strength ¢ (y) in the form

Eo() =[n,(»)/n;(1)165(), (.13b)
where n,(y) and n,(y) are the modal densities in the master oscillator and in the
set of satellite oscillators, respectively. (A modal density is the average number
of modes per unit frequency [12].) A tenet in (SEA) is that the modal coupling
strength £ (y) can never exceed unity. It transpires, nonetheless, that for the
stronger coupling strengths, the modal coupling strength ¢ () estimated via

(EA) may exceed unity when the typical modal overlap parameter (b), assigned
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to the satellite oscillators, falls below a threshold value. Thus a discrepancy
between the modal coupling strengths, as estimated via (EA) and via (SEA), may
ominously emerge. However, for modal overlap parameters that exceed the

threshold value, the validation of (SEA) is not challenged by (EA) [16].
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II. Elaborated Coupling Forms

In a companion paper, designated as Reference 1, the complex is specified in
terms of the impedance Z; (w)of the isolated master oscillator, the impedance
(fwm,)of the (r)th isolated satellite “oscillator” and the coupling impedance
(k, /i) ; the coupling is between the master oscillator and the satellite oscillator.
This complex is sketched in Fig.la [1-11]. In this complex, the satellite
oscillators remain uncoupled to each other. The purpose in the present paper is
to introduce a significant extension in scope. In this extension the isolated
master oscillator remains the same. An isolated satellite oscillator, the (#)th, is
specified by the impedance Z,(w) that may consist of both a mass and a

stiffness control term. The coupling of this satellite oscillator to the master
oscillator is specified by the coupling impedance Z,, (@) and a gyroscopic
coupling coefficient (G, ) [12,13]. The coupling impedance Z,, (@) consists of a
mass and a stiffness control term. A complex of this type is sketched in Fig. 1b.

The mass and the stiffness control terms in this complex are related in the forms
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K =K,(1+in,); (K,/M) = o2, (1a)
ke = ko (4+in,); (kp/m,) =af, (1b)
ko = kor (1415 ); (koep /) = 02, (o)

where the pairs {M,K}, {m, .k, }, and {m, ,k,} are, respectiyely, in reference
to the master oscillator, to the (r)th satellite oscillator and to the coupling
between them. The parameters (77,), (7,), and (7, ) are the corresponding
stiffness control loss factors, respectively‘. To complete the definition of the
coupling, the mass (m,)and the gyroscopic coefficient (G,) need to be
specified [12, 13]. These are specified through the coupling parameters which
are defined in the normalized forms

Py = (e Imy) 5 B, =[G, (@, m,)], (1d)
respectively. With the assistance of Fig. 1b, the linear equations of motion of the
master oscillator in situ and of a typical satellite oscillator in situ are derived

R

| ZZ(w)Vo(w)+§ 2, (0) V(@) + [Z5(0) - G, IV, (@) = P,(@), (2a)
[Z, (@) + Zo, (@) 1V, () + [ 25 (@)+G, IV, (@) = 0, (2b)
respectively, where V(@) and ¥, (w)are the responses of the mass (M) of the

master oscillator and the mass (m,) of the (r)th satellite oscillator, respectively,
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(R) is the number of satellite oscillators that are coupled to the master oscillator,
P,(w)is the drive that is applied externally to the master oscillator; the satellite
oscillators are not driven externally, ZJ(w) is the impedance of the master
oscillator in isolation

Z3(@) = ((oM)N-() 2 U+in)]; v =(0/a,), (3a)
Z,(w)1s the impedance of the (r)th satellite oscillator in isolation

Z,(@) = (om)1~(z,)* A+in)]; % =(@,/0,); 2 = (%, /), (3b)
Z. (@) is the impedance of the coupling between the master oscillator and the
(r)th satellite oscillator

Zer(@) = (iom, )i ~(20,)" (47, )]

Moy = (Mg /M) 5 Xop = (g | @,) 5 2o = (X 1Y), (3¢)
Z,(®) is an impedance that is related to the coupling impedance Z,,(@);
namely

Ze (@) = (i@ my ), +(2, ) (1+i7,, )], (3d)
and (m,), (x.), (1,,), and (G,)are defined in Egs. (1) and (2) [12]. The
superscript (o) is reserved to designate quantities that pertain either to the master
oscillator in isolation or to satellite oscillators under certain and definitive

impositions. Thus, for example, from Eqgs. (2a) and (3a), one may state
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Z3(0)V; (w) = R (»), G
where V) (w)is the response of the master oscillator in isolation. By a

straightforward algebraic manipulation of Eq. (2) one derives

Zy(@) Vo(@) = P(0) ; V,(0)=B,(0)V,(@), 5)
where

Z,(@) = Z3 (@) + i[{z, (@) Zer (@)} +(Qer )12, (@) + Z, ()T, (62)
B, (@) = [Z5(w) +1G,][z,(a>) + Z, (@), | (6b)
(Qr)* = 4me, Ky + (G, ), (6¢)

and the quantities Z; (), Z,(@), Z, (w)and Z,.(w)are stated explicitly in Eq.
(3). Indeed, from Eqgs. (1), (3) and (6) one obtains
Zo(@) = Z,(y) = (@ M)[1-(») > {[1-5)]+ [, + 1, T} ], (7a)
B, (@) = ~ [, + (2,,)* (1 +iney) = i(Z, /)] »

[+ e, )= (2, )* (i, )T (7b)
where
F )2 A +in,) = (5 (A +iny) + () (+ing,), (8a)
[s() —in (1= () ZI:) {m A0 - ) A +in,)]

[Py = (20 )* (L + i) = @r / )} o

[ + ) = (2, ) A +in, )T}, (8b)
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and, again

Zp = (X 1¥)s 2, =(%19); 25 = (x5 1y);

Ger 1 9)? = 47y (26, ) U+ imp) +(B, 1YV 5 Ty =Dy N0y m )], (8¢)
One notes that the compound coupling parameter (g,,) is a functional of the
mass and gyroscopic coupling parameters (7, )and (g,), respectively. These
coupling parameters are defined in Eq. (1d). One also notes, with satisfaction,
that the dependence of the terms in the sum on the gyroscopic coupling
parameter (g, )is quadratic so that the sign assigned to the gyroscopic coefficient
(G,) plays no role in the influence of the individual satellite oscillators on the
impedance of the master oscillator. The gyroscopic coupling is in quadrature to
both, the mass and the stiffness control couplings.

Examination of Eqs. (7) and (8) shows that the normalized impedance that the
satellite oscillators collectively induce on the master oscillator may be cast in
term of the two-vector {S(y), 7,(»)} (R), which is a function of (R), as
indicated. The evaluation of this two-vector, hdwever, is predicated on explicitly
specifying the two-vector {x,.,7,, }(R), its’ two supplemental components
{x,, 7,}(R) and {x., 7. }(R)and finally assigning the compound coupling

(g.r). The two-vector {x,,, 7,,} (R)is designed, for the sake of convenience, to
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stay fixed with respect to variations in the index (7). In this design, the springs,
that are placed on either side of the mass of a satellite oscillator, are set to be
similar. With this design, Eq. (8b) is evaluated. In this paper the induced
reactive factor S(y) and the induced loss factor 7,(y) are conéidered. These two
quantities are examined for a variety of coupling forms and coupling strengths as
well as for a number of values of the modal overlap parameters (b,) and (b,,)
associated with the loss factors 7, and 7,,, , respectively [1]. By and large, (b,)is
set equal to (b, )and they are equated to (b); b =5,=5,. The simplifying
equalities are imposed without considerable loss in generality. Using Eq. (8b),
the exact evaluations of S(y) and of 7,(y) are executed for three values of (3);
b =(0.1), (2.0) and (10). In these evaluations one finds that S(y) and n,(y)are
functions of (b). On the other hand, the first order approximation of S(y) and of
ns(y), designated by S;(y) and by n;(y), respectively, that are derived from the
replacement of the summation in Eq. (8b) by an integration, are found to be
independent of (b). The evaluations are graphically displayed; three exact eval-
vations for the three values of (b) and the corresponding first order
approximation of S(y) and 7,(y) are superimposed in éach of the displays. The

curves representing the first order approximations of S(y) and of 7,(y), in these




displays, are dubbed (FOA). The comparison between these four evaluations in

each display can thus be made at a glance, assisting greatly in the interpretation
of the data that is computed and displayed. In the frequency range of concern,
when (b) is small compared with unity the values of S(y) and the levels of
ns(y) in the exact computations, undulate, as functions of (y). (The frequency
range of concern spans the resonance frequencies of the satellite oscillators.)
The excursions in the undulations increase with decrease in (b). It transpires that
the mean-value averaging of the undulated values of S(y) and levels of 7,(y)
when (b) is small compared with unity; b <<1, are, respectively, coincident with
curves that are independent of () [15-17]. (Values are arithmatically averaged,
levels are geometrically averaged.) These curves for S(y) are designated S,(y)
and for 7,(y)are designated 7,(y). In the frequency range spanned by the
resonance frequency distribution of the satellite oscillators - - the frequency
range of concern - - S,(y) is positive; i.e., mass control, for ¥<1 and is
negati{le; i.e., stiffness control, for ¥> 1. Moreover, in that frequency range of
concern, S,(y) is largely a “straight-line” intersecting the neutral line either at or
in the vicinity of y=1. On the other hand, in that same frequency range 7,(y) is

also a “straight-line”; that line, except when a gyroscopic coupling is present, lies
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largely horizontal at a given level. As (b) approaches and increases above unity
the undulations in the exact values of S(y) and in the exact levels of 7,(y) are
suppressed and, in the frequency range just defined, fhe phenomenon of erosion
commences and increases with increasing (). In the case of the induced
reactive factor, erosion is manifested by values that progressively converge from
S,(y) onto the first order approximation to S(y), as (b) increases. The first
order approximation to S(y); namely S;(y), is equal to zero; S;(¥)=0 and in
general, S,(y) # S;(»). On the other hand, in the case of the induced loss
factor, erosion is manifested by levels that progressively decrease, from the first

order approximation of 7,(y), as (b) increases [6, 7]. The first order approx-

imation of 7,(y) ; namely 7;(»), is coincident with 7,(»); 7,(») = 7;(3).
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III. Resonance Frequency Distribution of and Assignment of Individual

Loss Factors to the Satellite Oscillators

It has been argued that the coupling between two oscillators may cause a shift
in the resonance frequency that each has in isolation. Indeed, it was suggested
that this shift may be used to determine the “coupling strength” [18, 19]. One
may then question as to what exactly are these shifis and are they significant.
The shifts, as such, and the implications that they may harbor are not addressed
in the present paper; here these shifts are overridden by design. The design
intends to derive a suitable resonance frequency distribution and a proper
assignment of individual loss factors to the satellite oscillators. The design is
expressed, then, in terms of the two-vector {x,,,7,,}(R), where (x,,)is the
normalized resonance frequency and (7,,)is the loss factor associated with the
(r)th satellite oscillator. Examination of Eqs. (7) and (8) shows that the nor-
malized resonance frequencies of the satellite oscillators, in situ, are ascertained
by satisfying the equality
A+ 7)) = (5, )5 A+ )= (2,05 () = ()% + (5 )2, (92)

As in Reference 1, here too (x,,)is assigned a priori with equal numbers of
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resonance frequencies on either side of the resonance frequency(w,)of the
master oscillator and the distribution is aligned in ascending order; namely

Xep SXgg 5 g=(+1D; 1< r< (R-1). (9b)
A scheme that simultaneously satisfies Egs. (9a) and (9b) and the mid-point just
imposed, demands a supplemental condition of design between the two spring
stiffnesses that support the mass of a satellite oscillator. [cf. Fig 1b.] This
condition of design requires that

(%) = 1+ A,,) for 7=(1/2), (9c)
where, in Eq. (9¢), () may be allowed a continuous connotation [15, 16]. Con-
sulting Reference 1 and using Eq. (9a), one may express the loss factors that are
associated with the (r)th satellite oscillator in the forms

n =16,12(x,)?18(x,)* 1or);  7q, = [bc,/2(Axc,)2][a(x0,)2/ar];

T =106 TG 7+ er) 1y (10)
where (b,) and (b,,) are thé modal overlap parameters assigned to the back
spring and the fore spring. These two springs support the mass (m,).
[cf. Fig. 1b.] For the sake of simplicity and computational advantage, the
stiffness on either side of the mass of a satellite oscillator are assumed to be

“similar” in the sense
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)= @) () (o) = (@) ()5 (5) = (@ + )2 (0), (A1)
where (a,) and (a,)are dubbed fhe spring factors. In keeping with the
definitions of (7, ) and (g, ), as the mass coupling parameter and the gyroscopic
coupling parameter, the spring factor (@, ) may be designated the stiffness
coupling parameter. It is conducive to specify (x7) in a form that is compatible

with one of the forms introduced in Reference 1; namely

x? =[1+{1 - 27} y(R)TV/2, (12)
where
F=r(R+1)"; R=R@R+D)Y; yR)=[y/2R)]; y<l, (13)

and (r) may be discrete; 1<r <R, or continuous (&) < r < (R + €) with ¢ <1.
It should be appreciated, however, that although in this report Eq. (12) is cast in
stone, other forms for (x;)may be readily introduced and similarly manipulated.
Also and similarly, as introduced in Reference 1, the normalized mass (7, ) of
the (r)th satellite oscillator is assumed to be independent of (r) and to be of the
form
R v

i, = (m, | M) = (M I M)(R)Y™; M, = ;(m,). | (14)
With the intended exceptions of the last section in this report it is convenient,

without a great loss in generality, to assume that the spring factors (e,) and
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(a,, ), the coupling pararﬁeters (g,) and (., ) and the modal overlap parameters
(b,) and (b,,) are to be independent of (r) ; namely

@ =a; &, =0a;; g =g; M, =m; b =b,=b, (15)
and it is observed, as already intimated, that the modal overlap parameters (b,)

and (b,,) are set equal to (b). [cf. Appendix A.] From Egs. (9¢), (10), (11) and

(12), one then finds
(a+a)=01+m,), (94d)
M =T = My =0(F); 7= 1m) RG], (16)
where

b=[(zb) R+ an

Under this imposition, the two-vector {(x,,), (7,,.)} (R) assumes the simple form
{X%)s (1)} R) = {(A+m)2 (x0), n(P)}, (18a)
and, if further, the mass coupling parameter (77, ) is negligible; (7,) << 1, then

{Gen)s ()} (R) = {(x7), n(7)}, (18b)
where the superscript (0) in (x,.) and (7,,)recognizes that (x7.)and(n,)are
restricted to specific impositions. [cf. Eq. (4).] With R=27 and m, =0, Eq.
(18) is evaluated and depicted in Fig. 2a, as a function of (); Fig. 2a.1 depicts

(x,.) and Fig. 2a.2 depicts (77,,). In Fig. 2a the modal overlap parameter (b) is




28

increased from (0.1) to (2.0) and then onto (10). To these changes(7,, ) increases
by a factor of (20) an.d then by a factor of (102) , whereas, to these changes in
(), (x,,) remains intact. With R =7 and m,=0, Eq. (18) is evaluated and
depicted, in the format of Fig. 2a, in Fig. 2b. On the other hand, with R =27,
but with 7,=0.75, where, for example, in addition a =1.75, a,=g.=0,Eq.
(18) is evaluated and depicted, in the format of Fig. 2a, in Fig. 2c. It is noted that
for a continuous r, except for obvious end conditions, Figs. 2a.1 and 2b.1 are
identical. However, Figs. 2a.2 and 2b.2 are not identical. On the other hand, it is
noted that Figs. 2a.2 and 2c.2 are identical, however, Figs. 2a.1 and 2c.1 are not
identical. The commonalties and disparities among Figs. 2a, 2b and 2c, are as
expected. [It is also noted, in passing, that (x,,) and (7,,), stated in Eq. (18) are
independent of the gyroscopic coupling parameter (g, ).]

It remains then to use the two-vector stated in Eq. (18) to evaluate the induced
reactive factor S(y) and the induced loss factor 7,(y). Indeed, using Eq. (18) in
Eq. (8b), one derives the more explicit expression for S(y) and for 7,(y)in the

form
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[S)-in 1= ()’ ﬁrﬁr{[ka(zﬁ’)z {L+in(P)}] g - e (7)* {1+in(F)} ]
~47, 0 (27)" {1+in(F)} =81 9)%} [+ 70) ~(a+ ) (20 {L+in(F )T
7 =(21y), (84)
where (7,), (8), (¥), (@), (@.), (x7), (7,) and 7(7) are stated in Egs. (1d), (3a),
(11), (12), (14) and (16), respectively. The computations of S(y) and of n:(»)
are largely carried out assigning the standard values
(M,/M)=10"",5=(0.1) and R =27, (19)
where (M) is stated in Eq. (14), (b) is the modal overlap parameter and (R) is
the number of satellite oscillators in the set. When these standard assignments
are deviated from, specific mentions are to be rendered, notwithstanding that, at

times, the employment of these standard values may be reiterated.
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IV. Revisiting the Results Presented in Reference 1

It may be useful, at this stage, to reproduce results that are depicted in
Reference 1. To this end, the following impositions are rendered
a=0; a. =1; m,=0; g =0. (20)
- These impositions render the complex commensurate with that defined in
Reference 1 and sketched in Fig. 1a. [cf. Fig. 1b.] For these impositions, Egs.
(16) and (18b) and Fig. 2a are validated. One finds that Figs. 2a.1 and 2a.2 are
akin to Figs. 3a and 7a of Reference 1, respectively. In addition to evaluating the
two-vector specified in Egs. (16) and (18b), the corresponding induced reactive
factor S°(y) and induced loss factor n?(y) are evaluated using Eq. (8d) and the
assignmént stated in Eqgs. (19) and (20). Again, the superscript (0) in S(y) and
in 77, (y)indicates that the evaluations are restricted to specific impositions.
These evaluations of S°(y) and of n?(y)are depicted in Fig. 3a. The modal
overlap parameter (b) is increased from the value of (0.1) to (2.0) and then onto
(10) and S°(y) and n?(y) are evaluated and depicted in Figs. 3b and 3c,
respectively. There are no counterparts to Figs. 3a.1, 3b.1 and 3c.1 in Reference

1. However, the identity of Figs. 3a.2 and 3b.2 with Figs. 5a and 6a of Reference
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1, respectively, is clear. In particular, the undulations that exist in Fig. 3a.2 and
the'suppression of these undulations in Fig. 3b.2 correspond to a phenomenon
that is discussed in detail in Reference 1. Figure 3¢ does not have a counterpart in
Reference 1. This figure is included in order to bring in another phenomenon;
the phenomenon of erosion previously observed with respect to the induced loss
factor 7, (y) [6’_ 7]. Again, the phenomenon of erosion besets both, the induced

reactive factor S(y) and the induced loss factor 7,(y) . It transpires that mean-
value averaging (arithmatic mean) of the values of S(y) and the mean-value
averaging (geometrical mean) of the levels of 7,(y), respectively, for modal
overlap parameters (b) that are small compared with unity, coincide and are thus
indei)endent of (b) [1, 17]. This coincidence is illustrated in Fig. 3d. In this
figure S(y) and 7,(y) are separately depicted for three small values of the
modal overlap parameter (b); b=(0.01),(0.1) and (0.3). The coincident
curves representing the mean-values of S(y) and the mean-levels of 7,(y) for
all small values of (b); b << (1.0), clearly emerge in Fig. 3d. These coincident
curves are designated S,(y) and 7,(y), respectively. An erosion is here a
phrase to describe deviations of the values of S(y) and of the levels of 7,(y)

from these mean-values and mean-levels, respectively, when (b) approaches and
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increases beyond the value of unity. An erosion is then a dependence of the
values of S(y) and of the levels of 7,(y) on (b) as this parameter approaches
and exceeds unity. To define erosion more precisely, a subsequently derived first
order approximations to S(y) and to 7,(y) are brought to bear. Again, the val-
idations of the first order approximation to the values and levels, designated
S;(y) and 7;(y), respectively, is predicated on small values for the modal
overlap parameters (b); b<<l. The curves that depict S;(y) and 7;(y) are
dubbed (FOA). It transpires that S;(y) =0 and 7;(y) =7,(y). Again, as the
values of (b)increase more and more above unity, erosion in S(y)is manifested
by a progressive convergence of S(y) from S,(y) onto S;(») = 0. On the other
hand, as the values of (b) increase more and more above unity, erosion in 77,(y)
is manifested by a departure of 7,(y)from 7,(y)=n;(y) toward lower and
lower levels. Erosions are most pronounced at the edges of the frequency range
of ’concem; the higher the values of the modal overlap parameters (b) above
unity, the more the inroad from the edges into the center of the frequency range.
(Again, the frequency range of reference is that spanning the resonance
frequen.cy distribution of the satellite oscillators.) To bring into focus the

existence and nature of erosion for S(y) and for 7,(y), as just discussed, Figs.
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3a, 3b and .3c are overlaid in Fig. 3e. Also, superimposed on Fig. 3e are the
curves just dubbed (FOA). The presence of erosion, as just described, is thus
revealed in Fig. 3e. This figure shows, however, that neither is erosion in S(y)
completed nor is erosion in 7,(y) significant in the vicinity of y =1. To largely
complete the erosion in S(y) and to cause an erosion in 7,(y) at and in the
vicinity of y=1, the normalized overlap parameter (5); b =[(x b)(R+1)_1],
needs approach and exceeds unity [1, 6, 7]. This extreme case of erosion is
illustrated in Fig. 3f. In this figure the only change, iﬂ parameters that specify
the complex assigned to Fig. 3e, is the number (R) of satellite oscillators. The
number (R) is (7) instead of (27), so that for b = 10, (5) comfortably exceeds
unity in Fig. 3f. After this brief digression, it is time to return to consideration of
Reference 1 and beyond.

The Alimited scope of Reference 1 curtails the modeling and the analysis of the
complex there considered, notwithstanding that complexes employed to date are
largely subjected to similar limitations [2-11]. A poignant question arises: what
is fresh about the complex defined herein as compared with the complex defined
in Reference 1?7 Whereas in Reference 1 a satellite oscillator in isolation is

characterized by a mere mass control term, here it is characterized by the
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oscillator impedance Z,(®), as stated in Eq. (3b). This oscillator, in addition to
the mass control term, may also possess a stiffness control term. Moreover, the
coupling impedance Z_ (), as stated in Eq. (3¢c), may, in addition to the
stiffness control term, possess also a mass control term. Finally, the coupling
between a satellite oscillator and a master oscillator may be allowed to include a
gyroscopic control term [12, 13]. Obviously, the complex sketched in Fig. 1b
and formulated in Egs. (5) — (8) is more versatile than that in Reference 1, as
sketched in Fig. 1a. It may be useful, therefore, to investigate a few of the
attributes of this versatility even under the similarity conditions imposed in Eq.

(11) and the simplifying assumptions proposed in Eqgs. (14) and (15).
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V. Various Coupling Forms and Coupling Strengths

It is of interest to compute and display the induced reactive factor S(y) and
the induced loss factor 7,(y), as functions of (y), for a variety of selected coup-
ling forms and coupling strengths. The coupling forms are defined according to
whether the coupling is dominated by either a stiffness coupling, a gyroscopic
coupling, a mass coupling or combinations of these coupling types. The
coupling strengths of these forms are determined by the values of the coupling
parameters; the stiffness coupling parameter (a;,), the gyroscopic coupling
parameter (g); g, = g, and the mass coupling parameter (7,). The values of ‘
these coupling parameters may be categorized from weaker-coupling, to
moderate-coupling onto stronger-coupling in the range of values of 0.03, 0.15
and 0.75, respectively. In this categorization, the coupling of the satellite
oscillators to the master oscillator, defined in Reference 1, is of stiffness control
coupling form; i.e., o, # 0, g =, =0, and of (very) strong coupling strength;
namely, o, =1.0 [ =0.0.]. Such a coupling form and a coupling strength define
satellite oscillators commonly designated sprung-masses [1-11]. The new

evaluations in this paper are exhibited in Figs. 4-7. Of significance are not only




36

the variations in the coupling forms and in the coupling strengths, but, also, the
influence ;that changes in the modal overlap parameters have on the nature of the
induced reactive factor S(y) and induced loss factor 77,(y). A first set of figures
is evaluated with b = (0.1), a second with 5=(2.0) and a third with 5=(10). A
major feature, common to all evaluations, is that the undulations in the first set,
for which 5=(0.1), is suppressed in the second and in the third, for which
b=(2.0) and b=(10), respectively [1]. Figures 4-7 are cast in the format of Fig.
3e; corresponding figures in the three sets are overlaid so that the undulations in
the first set and their suppression in the second and third are observed at a glance.
Another major feature, common to all evaluations, is that the erosions, discussed
briefly in the preceding Section with respect to S(y) and 7,(y)and depicted in
Figs. 3e and 3f, thread all figures. It is noted that when (b) [=(7rb)(R+l)‘1]
approaches and exceeds unity, erosions in S(y) are nearly completed and in
n,(y) erosions occur even at and in the vicinity of y=1. These extreme
erosions, however, in addition to the dependence on (), seem to carry a slight
dependence on the coupling forms and strengths. These dependencies, which are
more clearly apparent when the coupling is weak; e.g., in Figs. 6b and 7d, are, at

this stage, merely noted, notwithstanding that the linear scale, reserved for the
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induced reactive factor S(y), hardly exhibits values that belong to moderate and
weak coupling strengths. Supplementally, some of the emerging details in Figs.
4-7 may be summarized as follows:

1. The format of Fig. 3e is reproduced in Fig. 4a, except that the stiffness
coupling parameter is reduced from o, =1.0 to @, = 0.75; i.e., from very strong
to strong stiffness control coupling . This change decreases the values of S(y)
and the levels of 7,(y)in Fig. 4a as compared with those in Fig. 3e. The
decrease is, however, slight. A more drastic decrease in the values of S(y) and
in the levels of 7,(y) occurs in Fig. 4b as compared with Fig. 3e. In Fig. 4b the
stiffness coupling parameter is o, =0.15, whereas in Fig. 3e a,=1.0. This
decrease in the values of S(y) and in the levels of 7,(y) is largely related to the
difference in the coupling strengths. In Fig. 4b the coupling strength is moderate.
Again, it is noted that on the linear scale, on which the induced reactive factor
S(y) is a priori depicted, the values, even for moderate coupling strengths, are
well nigh negligible. (There is little logic to expanding the linear scale to gain
insight into the behavior of negligible values. The negligibiiity itself is infor-

mation enough.)
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2. The forrﬂat of Figs. 4a and 4b is reproduced in Figs. 5a and 5b, respectively,
except that the stiffness coupling form is changed to a zgf.yroscopic coupling form;
namely, a, =m,=0, g # 0. In Fig. 5a the coupling is strong; g=0.75, and in
Fig. 5b the coupling is moderate; g=0.15. The similarity between Figs. 4 and 5
is obvious. Also obvious is the slope in the curves in Fig. 5. This slope is
characteristic of the gyroscopic coupling. The gyroscopic coupling enters in the
form of (g/y) and not merely in the form of (g). [cf. Eq. (8).]

3. The format of Figs. 4a and 4b .is reproduced in Figs. 6a and 6b, respectively,
exceﬁt that the stiffness coupling form is changed to a mass coupling form;
namely, a¢,=g=0, m_.# 0. In Fig. 6a the coupling is moderate; #,=0.15, and
in Fig. 6b the coupling is weak; m,=0.03. The similarity between Figs. 4 and 6
is obvious although the values of S(y) and the levels of 7,(y) in the former are
higher than in the latter, largely in consequence of the disparities in the coupling
strengths.

4. Finally, the format of Fig. 4a is reproduced in Fig. 7, except that the stiffness
coupling form is modified to accommodate, in addition, another form of
coupling. In Fig. 7a, the additional coupling form is mass control; namely:

a, =m,=0.75[a=0.1.], g=0, which is a very strong coupling strength. In
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Figs. 7b, 7c and 7d, the additional coupling is gyroscopic control; namely, in Fig.
7b: a,=0.53[ax=0.43.], g=0.54, m, = 0,which is a strong coupling strength,
in Fig. 7¢: a, = 0.10 [@=0.9.], g = 0.11, i, = 0, which is a moderate coupling
strength and finally, in Fig. 7d: a, = 0.02 [¢=0.98.], g = 0.022, m,=0, which
is commensurate with a weak coupling strength. The values of S(y) and the
levels of 7;(y) in these figures are set largely by the coupling strengths; e.g., the
higher the coupling strength the higher are the levels of 7,(»).

In ihe normalized frequency range of concern, the values of S(y) and the levels
of 77;,(y) in Figs. 3-7 that pertain to modal overlap parameters (b) that are small
compared with unity; e.g., & = (0.1), undulate. On the other hand, again in the
normalized frequency range of concern, the curves in Figs. 3-7 that pertain to
modal overlap parameters that exceed unity; e.g., b=(2.0)and (10), are
reasonably smooth. A few questions arise: Can these features be estimated by
replacing the summation mEq (8d) by an integration and if so, can this integral
be performed with ease? Can the result of this performance interpret the
response behavior of the master oscillator in terms of the various parameters that
define the complex? And last, but by no means least, what about the ﬁndu—

lations, do they feature in the result of this integration?
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VI. Replacing a Summation by an Integration

The index (r)is given a continuous connotation and the summation in Eq.
(8b) is replaced by integration. Under a condition that allows this replacement,
Eq. (8b) assumes the form [1]

150) - i = 07 [ ’gadz,m L) ()]
{[1- {z(7))* A+inFN] [, (r)~{z.(F)Y (1 + in ()] - (G, (F)/ yT} «
{[1+m, (P - [{z, (MY (A+in, PN, (21)
where
[7.(7)/ yF = 4, (F) {2, (F)Y (1+in. (7)) +[(E(F)/ y T
m(F)=p(F)R+) 5 f(F)dz,(F) = dF 5 {z,(F)} = {z(F)}* + {z.(F)};
Z=eR+D7; (R+2)=(R+e)(R+D)7L. (22)
If 77,(F)is small enough so that the vanishing of the real part of the denominator
in the integral in Eq. (20) predominates the values of the integral, the integral
yields |
(S =inYy=(x12) Y’ Lf () p() M+, ()T VP U, ()~ {z. (7)Y 1 »
| [2()Y 1(7) ~{ze (7)Y 1)1+ 4, () {ze (7)Y me (7))

—i[m, (7)) ~{z. GV T + [{2(7) 2. By 07 m. B )1+ () v 31, (23)
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where

(8) <7, < (R+8);

{z, 7)Y = (+in,) = {z(7)} + {z.(7)F s

{z, @)Y n, (7)={z(F)}* n(F) + (2. (7)Y 1.(F,) - | (24)
Equation (24) defines the specific value of (7,) and it is recognized that (7,)is a
function of (y) and vice versa. Adopting the impositions and the simplifications

that are conducted in Egs. (16) and (18), one may derive from Egs. (23) and (24)

the results '

S(») =D A} SG) =8 =0, (252)
7,(»)=DIC + O{n(»)¥* 15 n,(»)=m(»)=DC, (25b)

with

D =[7z/2y(R)][M; AMR)][(1+m,)]", (262)
A=[(m+ a.)* + (7, - a,)], (26b)
C = [(A +a.)* +(&/ )1, | (26¢)
O=[(+m,-a.)a.], (26d)

and where

f@)=l@+a )Py RGP T u)=(M/MR), (26¢)

1) =) =@ IDRGY 1 1) =n.0) =7, (), (26£)
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A+m,) = (a+a,); N+@/ TV <y<1-(/27YV? . (26g)
The underlying condition of the validity on Eq. (25) is detailed in Reference 1.
This condition holds even though the coupling forms are elaborated to include
not only a weaker stiffness coupling, but also mass and gyroscopic coupling
forms. Moreover, the coupling parameters may define various degrees of
coupling strengths. Strictly, the validity of Eq. (25) demands the equality of
S(y) to the primary term S;(y)and 7,(y)to the primary term n;(y). These
equalities designate, S;(y) and 7;(y) the first order approximations to.S(y) and
“to 77,(y), respectively. The terms 4{n(y)} and O{7( y)}2 are of the order of the
higher approximations to the integral, notwithstanding that situations exist in
which (A) and (O) are identically equal to zero; e.g., when the satellite
oscillators are sprung-masses for which o, =1, g=,=0. [cf Eq. (20).] In
these situations the equality of the integral evaluations of S(y) to S;(») and of
ns(y)to n;(») need not be specifically invoked. (More on this subject when in
a subsequent paper higher order approximations, than the first, are to be
evaluated.) Clearly and significantly, the primary terms S;(y) and 7,(y) and,
therefore, the first order approximatioﬂs of S(») and of 7,(y) are independent

of the modal overlap parameter (b). Without much-a-do, in this paper only the
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first order approximations are implemented and considered. In this approx-
imation the first order approximation to S(y) is the primary term S;(y) and to
7,(») is the primary term 77;(»).

Equation (25) reveals the parametric composiﬁon of the first order approx-
imation to the induced reactive factor S(y) = S;(y) and to the induced loss
factor 77,(y) = n;(»). Again, one is reminded that the induced reactive factor
S(y) and the induced loss factor 7,(y)describe the influence of the coupled
satellite oscillators on the impedance of the master oscillator. In the absence of
coupling and in units of [i(w, M) y2] the reactive factor is [ y2—-1]; in the
presence of coupling it is [y2 + S(»)—-1]. On the other hand, in the absence of
couplings the loss factor is (7,); in the presence of couplings it is [7, +7,(»)].
When S(y) is positive the satellite oscillators contribute, through the couplings,
a mass-like term, when negative, a stiffness-like term. On the other hand, since
the satellite oscillators add merely passive elements to the complex, 7,(y)is
invariably positive. Equation (25) confirms this statement and exposes the
proportionality of S;(y) and of 7;(y)to (D). Therefore, S;(y) and 7;(y) are
directly proportional to the mass ratio(M;/M); it is estimated that for a

‘reasonable complex with (M /M) equal to about a tenth, (D) is of the order of
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unity. [cf. Eq. (19).] The equality of S;(y) to zero and the quadratic
deiaendence of the primary term 7;(y) of 7,(y), in terms of (C), which
entertain the term-components (rﬁc+ac)2 and (g/ y)z, is of significance.
Again, it is emphasized that the primary terms S;(y) and 7;(y)are the true first
order approximation to S(y) and to 7,(y), respectively; in this context the
terms DA {n(y)} and D0{77(y)}2 are superfluous. In any case, Eq. (26)
indicates that DO {( y)}2 in 7,(y)is rarely dominant even when the loss factor
n(y)of a typical satellite oscillator exceeds any of the coupling parameters;
m,,a,, (g/y)<n(y), notwithstanding that in the absence of any couplings
S(y) and 7,(»), as stated in Eq. (25), are negligible on account of 4=0 and of
C=0 and O =0, respectively. When couplings do exist, there are values of
S(y) that are non-zero whereas those of S;(y) are equal to zero. Yet when the
coupling strengths are weak, and even moderate, the values of | S(y)| are small
compared with unity even if (y) is at the edges of the frequency range of
concern. On the other hand, when couplings do exist, the levels in both, the first
order approximation and the exact evaluations of 7,(y), are certainly not
negligible, even if the couplings are weak. (Note that (77,)of the order of

(10’4) is not unreasonable [12].)
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As already discussed and demonstrated in Figs. 3-7 the curves for a modal
overlap parameter (b) that is small compared with unity; b << 1, possess values
and levels that are undulated. The excursions in the undulations are the more
pronounced the smaller is the value of (b) [11]. Nonetheless, the mean-value
averaging of the undulating values of S(y) and of the undulating levels of 7,(y)
converge unto two single curves, which are designated S,(y) and 7,(y), respec-
tively. [cf. Fig. 3d.] As(d)increases, approaching and exceeding unity, the
undulations, again true to form, are suppressed. As already intimated in Section
I, incrgasing (b) beyond unity brings in the phenomenon of erosion which
increases as the modal overlap parameter (b) reaches higher and higher above
unity.

To accentuate the nature of erosion in S(y) and in 7,(y), the first order
approximation (FOA) of S(y) [=S;(»)] and of 7,(»)[=7;(y)] are appropriately
superimposed on Figs. 4-7. [cf. Figs. 3d, 3e and 3f.] It is now observed, in these
figures, that the mean-value averaging of the undulations of the exact values. of
S(y) and of the exact levels of 7,(y), when (b) is small compared with unity;

b <<1, relate to the first order approximation (FOA) of S(y) and of 7,(y) in

the form: S,(»)#S;(y) exceptat y=1 and 7,(y) = 1;(»), respectively. Since
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S,(y) and SI(};) and 77,(y) and 7;(y) are independent of (b), these relation-
ships are also independent of (b)._ [cf. Figs. 3d and 3e.] (The independence of
ny(y) of (b) has been stretched by some to conclude that(b) may be rendered, a
priori, equal to zero. Neglecting to mention in this rendering that mean-value
averaged levels are substituted for highly undulated levels, is not a viable
scientific procedure, unless ignorance is bliss [11].) On the other hand, when (b)
approaches and exceeds unity, the exact values of S(y) and the exact levels of
ns(y) become free of undulations, but these values and levels erode with further
increases of (b) [1, 6, 7, 15]. The erosion in the exact values of S(y) is a
departure from the curve designated S,(y), progressively converging on the first
order approximation at S;(y) =0, as (b) increases higher and higher above
unity. In contrast, the erosion in the exact levels of 7,(y) commences and
progresses from the levels of the first order approximation, at 7;(y), toward
lower and lower levels, as (b) increases higher and higher above unity. To
account for these progressive dependencies on (b), higher order approximations
are clearly required [20]. What is doubtful is whether higher and higher order
-approximations can account for the undulations when (b) needs to remain small
compared with unity. To account for the undulations, an entirely different
approximation procedure is thus called for. In this paper devising such an

approximation procedure is not attempted.
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VII. A Typical Member of an Ensemble of Complexes Supporting

Various Parametric Combinations

In the preceding evaluations, the distribution of resonance frequencies
(x,,) and the assigned loss factors (7,,) for the satellite oscillators are sequen-
tial functions of the normalized index (7). These two quantities, exemplified in
Figs. 2a.1, 2b.1 and 2c.1 and in Figs. 2a.2, 2b.2 and 2c.2, respectively, may be
smoothed out by extrapolation and interpolation into monotonic and continuous
functions of (¥); (*)=[r(R +1)_1 ]. This kind of smoothness is rarely found in
practice and a question arises as to what are the expected consequences of more
practical assignments for these parameters and others? In this section a few
layers are removed in the quest to discover the phenomena that may. be
encountered, in the induced reactive factor S(y) and in the induced loss factor
n,(y), by the insertion of these more realistic parametric values. Since the
assignment for the parameters that define the satellite oscillators and their
couplings to the master oscillator can hardly be dréwn, a more generalized
approach is undertaken to investigate the influence of introdhcing variations in

these parametric values. In particular, in this section two parameters are selected
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to carry these variations; either individually or in unison. In the first, fhe index
(r) of a satellite oscillator is assigned a distribution of pseudo-statistical values.
[Pseudo-statistical is in reference to a sample selected out of an ensemble of
random samples.] The index (r)is distributed sequentially and fractionally, in
the range 1<r<27. A pseudo-statistical index is designated A(r), where
AP SAQ); g=@r+1); 1<r<(R-1). [cf. Eq. (9b).] In the second, the
modal overlap parameter (b,)is assigned a distribution of pseudo-statistical
values that span the ranges (2) 2 b, > (0.1) and (3.5)2>5, > (i), respectively.
The distribution of A(r) and of (4,), withR = 27,.that are employed in this
section are depicted graphically in Figs. 8a, 8b, and 8c. The two-vector
{(x,+), (m,,)}(R), as stated in Eqgs. (16) and (18), is typically depicted, for the
pseudo-statistical values shown in Figs. 8a, 8b, and 8c, in Figs. 9a, 9b, and 9c,
respectively. Figure 9a depicts (x,,) as a function of A(») and Figs. 9b and 9¢
depict (7,,), as a function of (7), where A(r)= [A(r)(R+1)'1] and
r= [r(R+1)“1]. [cf. Fig. 2a.] It is observed, in Fig. 9a, that the pseudo-
statistical variations embody the phenomenon of mode bunching in which
variations in the modal density of the satellite oscillators drastically vary as a

function of A(r) [21]. On the dther hand, as Figs. 9b and 9c show, the loss
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factor (7,,), as a function of (r), faithfully follows the variations assigned to
(b,). InFig. 9b some of the values of (b, ) are less than unity, in Fig. 9c all the
values of (b,) are in excess of unity.

The influence of the variations, described in Fig. 8, on the induced
reactive factor S(y) and on the induced loss factor 7,(y), as functions of (y),
are exemplified in Figs. 10.1 10.2, as a pair, and in Figs. 11.1 and 11.2., as a pair,
respectively. Each pair of figures represents a set of figures. The first pair of
ﬁgurés in each set; e.g., Figs. 10.1a and 10.2a depict the base situation in which
A(r)=7 and b, =1. The second pair of figures in each set; e.g., Figs. 10.1b
and 10.2b, depict the situation in which A(r) is as shéwn in Fig. 8a and b, =1.
The third pair of figures in each set; e.g., Fig. 10.1c and 10.2c, depicts the
situation in which A(r) =r and (b,)is as shown in Fig. 8b. The fourth pair of
figures in each set; e.g., Figs 10.1d and 10.2d, depict the situation in which

A(r)=7 and (b,) is as shown in Fig. 8c. The fifth pair of figures in each set;

e.g., Figs. 10.1e and 10.2e, depict the combined situation in which A(r) and

(b,) are as shown in Figs. 8a and 8b, respectively. Finally, the sixth pair of
figures in each set; e.g., Fig. 10.1f and 10.2f, depict the combined situation in

which A(r) and (b,) are as shown in Figs. 8a and $8c, respectively. It is
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recognized then that each pair of figures in a set presents a complete evolution in
the process of applying the pseudo-statistical variations depicted in Fig. 8 to the
two parameters A(r) and (b,). Also, each pair of figures in a set selects a
specific coupling form and a specific coupling strength. Thus, Fig. 10 pertains to
a strong stiffness coupling: a,=1.0 [¢=0.0.], m, = g =0, and Fig. 11 pertains
to a mix of stiffness and of gyroscopié coupling of moderate strength:
a, =0.1[a=09.], g=0.11,m,=0. [cf. Figs. 3e and 7c.] [One recalls that the
values of S(y) relating to moderate and especially weak coupling strengths are
largely negligible compared with unity, even if (b) is as small as (0.1).
Therefore, the values of S(y) depicted in Fig. 11 are hardly discernible.]

The first pair of figures of each set; namely, Figs. 10.1a and 10.2a, and 11.1a
and 11.2a exhibit undulations in the values of the induced reactive factor S(y)
and in the levels of the induced loss factor 7,(y), as functions of (y). However,
these undulations are small and they are completely suppressed as soon as (b,)
approaches the value of (2). [cf. Fig. 3b.] The variations depicted in Fig. 8 are
clearly discernible in all the subsequent figures in the series entitled Figs. 10 and
11. True to form, there is but a tinge of edge erosion in Figs. 10.1a and 10.2a,

and in Figs. 11.1a and 11.2a yet in the likes of Fig. 3b stronger sign of erosion
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has already reared its head. From Figs 10.1a and 10.2a, and from Figs. 11.1a and
11.2a to Fig. 3b, (b) is changéd from unity to merely two. To confirm this
statement and to provide for convenient and interpretable data from which to
judge the more erratic data that incorporates the pseudo-statistical variations, the
first order approximation of S(y) and of 7,(y), given in Eq. (25), are super-
imposed on Figs. 10.1a and 10.2a, and on Figs. 11.1a and 11.2a and on all other
figures in the series entitled Figs. 10 and 11.

Again, the pseudo-statistical variations are defined by two competing and
nearly independent factors, i.e., by A(r) and b(r)[=(b,)]. In Figs. 9a, 10.1b,
10.2b, 11.1b and 11.2b; it is observed that at a mode bunching (a rich modal
density) region the influence of the satellite oscillators is more pronounced than
at a mode sparsity (a poor modal density) region [21]. On the other hand, when
the rﬂodal overlap pafameter (b,) entertains values that are small compared with
unity, the values and levels, as functions of (3), tend to fluctuate. The fluct-
uations are pronounced at and ih the vicinity of the resonance frequencies of
those satellite oscillators to which these small values of (b, ) are assigned. At and
in the vicinity of the resonance frequencies of those satellite oscillators to which

(b,) are assigned values that approach and exceed unity, no such fluctuations are




52

present; e.g., see Figs. 10.1c, 10.2¢, 11.1c and 11.2¢c, and Figs. 10.1d, 10.2c,
11.1d and 11.2d and contrast them, respectively [22]. When variations in both
parameters are combined, both characteristics can be identified in the values of
the induced reactive factor S(y) and in the levels of the induced loss factor
n,(»¥); e.g., see Figs. 10 and 11 and contrast, in particular, Figs. 101e, 10.2e,

11.1e and 11.2e with Figs. 10.1£, 10.2f, 11.1f and 11.2f, respectively.
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Appendix A

The sweeping assumptions rendered in Eq. (15), which leads to Eqgs. (9d)
and (16), culminating in Eq. (18), may be introduced more gradually. The
purpose for this Appendix is to effect such a gradual introduction. In this manner
when some of these assumptions are relieved, reevaluation of the induced
reactive factor S(y) and of the induced loss factor 7,(y) may be readily insti-
tuted.

From Eqgs. (9¢) and (12), the design demands that
(@, +ag) (x0)* = (1+,,) for F=(1/2), (A1)
and if (x7) becomes, by design, unity at 7 =(1/2), the expression reduces to
(a,+ay)=Q0+m,) for ¥ =(1/2). (A2a)
From Eq. (12) it is observed with satisfaction that (x;) is, indeed, unity at
7 = (1/2). On the other hand, from Egs. (10) and (11) one obtains
)1, = (8, /2) (005, (D} Or Ty (50) Mer = (Br 12) [t (52} 015

e =[2( +00 ) 2 T {8, [0{et, (x0)2 3/ 0r 1 + by, [0{er, (x2)?} 011}, (A3)
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where again, () is allowed to have a continuous connotation as explained in
Reference 1. In particular, if the spring factors (a,) and («,, ) are independent
of (r), Eq. (A3) simplifies to read

=G DR L ey = Cor I DR,

Moy = Brllers @ =05 Gy =0, (A4)

where (x7) is extrapolated and interpolated to become a continuous function

of (r)
[@In(x? /or]= R+ [y(R)(x7)*], (AS)
(B, ber) = (@ + @, (5, @)+ (B @), (46)
b =[x, )YR+D)"'1; b, =[(7b, )R+D'], (A7)

and from Eq. (A2a), by design
(a+a)=010+m,). (A2b)

From Eqgs. (10)<(12) and (A2)-(A7) one may cast the designed two-vector in the

form
{(x), W3 R) = {A+ )2, (B0} « {5, (15D} (R), ~(A3)
{65, 15} (R) ={(x2), (bey / )Y (RY(x2)* 13, (A9)

where




(+m,) " [a b, /b,)+a,] ;b #b,,

Pr =1 5 A+m) [aBlIb) el by=b, by=b,

1 -3 b=b.=b

cr>
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(Al0a)

(A10b)

(A10c)

the quantities (77,), (x7), 7(R) and (Fc,) are stated in Egs. (1d), (12), (13) and

(A7), respectively, and the superscript (o) in (x,,) and (77,;) recognizes that

(x/) and (7)) are restricted to specific impositions. [cf. Eq. (4).] For the sake

of computational and interpretive advantage the validity of Egs. (A4) and (A10c)

is universally adopted in this paper. [cf. Eq. (15).] Under this imposition, Egs.

(A8) and (A4) simplify
{Co), @ YR = {Q+ )2 (x0), n(F)} 5 B=[(xb)(R+1)7],

nF) =1, =0y =0, 71(F) =0 /7R,

(A1)

(A12)

where (x7) is stated in Eq. (12), and (8,) becomes equal to unity. [cf. Egs.

(182) and (16).]
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Fig. 1a. A master oscillator attached to a set of sprung-masses.
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Fig. 1b. A set of satellite oscillators coupled to a master oscillator.
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Fig. 3.1. Induced reactive factor S(¥)[=S°(»)], as a function of (y), for a stiffness
control coupling form with ¢, =1.0[@=0.0.], g = m, = 0. [Sprung-masses.]

a. With b=(0.1)

b. With b =(2.0)
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Fig. 3.1. Induced reactive factor S(y)[= S°(»)], as a function of (y), for a stiffness
control coupling form with a,=1.0 [@¢=0.0.], g = m, = 0. [Sprung-masses.]

c. With b = (10)

d. A superimposition of 4 = (0.01), (0.1)and (0.3), and (FOA). (*)
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Fig. 3.1. Induced reactive factor S(y)[= S°(»)], as a function of (y), for a stiffness

control coupling form with a,=1.0 [¢=0.0.], g = m, = 0. [Sprung-masses.]

e. A superimposition of a, b, and ¢, and (FOA).
f  As in 3.e above except that R = (7) and not (27).
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€. A superimposition of a, b, and ¢, and (FOA).

f. Asin 3.e above except that R = (7) and not (27).
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Fig. 4.1. Induced reactive factor S(y), as a function of (y), for a stiffness control
coupling
form. [R=27and (M,/M)=0.1.]

a. a,=075[a=0.25.], g=m,=0.[Strong coupling.]

m :
b. a,=0.15[a =0.85.], g=m, =0. [Moderate coupling.]
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Fig.4.2. Induced loss factor ns(»), as a function of (y),\ for a stiffness control
coupling form. [R =27 and (M,/M)=0.1.]
a. a, = 0.75[a=0.25.], g=m,=0.[Strong coupling.]

b. a,=0.15 [2 =0.85.], g =, =0. [Moderate coupling.]
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Fig. 5.1. Induced reactive factor S(y), as a function of (y), for a gyroscopically

controlled coupling form. [R =27 and (M,/M)=0.1.]

a. a, =m, =0[a =1.0.], g =0.75. [Strong coupling.]

b. a, =m, =0[a =1.0.], g =0.15. [Moderate coupling.]
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Fig. 5.2, Induced loss factor n,(y), as a function of (y), for a gyroscopically

controlled coupling form. [R =27 and (M;/M)=0.1.]

a. a, =m, =0[a =1.0.], g=0.75. [Strong coupling.]

b. a, =m,

O[a =1.0.], g=0.15. [Moderate coupling.]
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Fig. 6.1. Induced reactive factor S(y), as a function of (y), for a mass control coupling

form. [R=27and (M,/M)=0.1.]

a a. =g

Ol =1.15.], m, =0.15. [Moderate coupling.]

b. a,=g =0[a =1.03.], m, =0.03. [Weak coupling.]
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Fig. 6.2. Induced loss factor 7,(y), as a function of (y), for a mass control
coupling form. [R =27 and (M,/M) =0.1.]
a. a, =g =0[a=1.15], m, =0.15. [Moderate coupling.]

b. a,=g =0[a=1.03], #, =0.03. [Weak coupling.]
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Fig. 7.1. Induced reactive factor S(y), as a function of (y), for mixed control coupling

forms. [R=27 and (M,/M)=0.1.]

a. a,=m, =0.75[a=1.0.], g=0. [Very strong coupling.]
0

c. a,=053[a=047], g=054, m, =0. [Strong coupling.]
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Fig. 7.2. Induced loss factor 7,(y), as a function of (y), for mixed control
coupling forms. [R =27 and (M,/M)=0.1 ]

a. a = m, =0.75[a =1.0.], g=0. [Very strong coupling.]

o
K
Il

0.53[x =0.47.], g=0.54, m, = 0. [Strong coupling.]
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Fig. 7.1. Induced reactive factor S(y), as a function of (y), for mixed control coupling
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c. a,=0.10[a=0.90.], g=0.11, m, =0. [Moderate coupling.]
0.02 [ =098.], g=0.022, m,=0. [Weak coupling.]
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Induced loss factor 7,(y), as a function of (y), for mixed control

coupling forms. [R=27 and (M,/M)=0.1.]

c. @, = 0.10[x¢=090.], g=0.11, m, =0. [Moderate coupling.]

d. a,=0.02[z=098] g=0022, m=0. [Weak coupling. ]
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